Tömegpont dinamikája » Két labda felpattanása

Média

Filmek

Jelenség leírása

Ha bizonyos magasságból vízszintes talajra ejtünk labdákat, akkor azok kisebb sebességgel pattannak vissza, mint a leérkezési sebességük. Ha azonban két labdát egymás tetejére helyezünk, és így ejtjük le őket, akkor a felső labda meglepően magasra pattanhat.

Összeállítás

Helyezzük a könnyebb labdát a nehezebb tetejére és ejtsünk le a labdákat bizonyos magasságból vízszintes talajra. Vizsgáljuk meg, hogy milyen magasra pattannak vissza.

Eszközök

Labdák (például gumilabda és ping-pong labda).

Magyarázat

112. Két labda felpattanása

Ejtsünk labdákat bizonyos magasságból vízszintes felületre. A labdák sohasem pattannak vissza tökéletesen rugalmasan, a visszapattanó labda alacsonyabb magasságot ér el, mint ahonnan elengedtük. Ha két labdát egymás tetejére teszünk, és elengedünk, akkor a felsõ labda sokkal magasabbra emelkedik a visszapattanás után, mint ahonnan indultak. Ennek az a feltétele, hogy az alsó labdának nagyobb tömegûnek kell lennie, mint a felsõnek.

A jelenség magyarázata az, hogy a visszapattanáskor egymás utáni ütközések sorozata játszódik le; elõször az alsó labda ütközik a talajjal, és valamekkora sebességgel elindul felfelé, majd a lefelé mozgó felsõ labda ütközik a már felfelé mozgó alsólabdával. Mivel az alsó tömege nagyobb a felsõénél, az alsó labda egy ütõhöz hasonlóan fellövi a könnyû felsõ labdát.

Tételezzük fel, hogy a labdák tökéletesen rugalmasak, az egymást követõ ütközések pillanatszerûek, és számítsuk ki a visszapattanás utáni sebességüket. Legyen a felsõ labda tömege m, az alsóé km, és érkezzenek a talajra v sebességgel. Tegyük fel, hogy az alsó labda tömege nagyobb (k >1). Tekintsük a függõlegesen felfelé mutató irányt pozitívnak, és tételezzük fel, hogy a labdák mindvégig ugyanazon függõleges egyenes mentén mozognak.

Az elsõ ütközést követõen az alsó labda +v sebességgel mozog felfelé, a felsõ pedig -v sebességgel lefelé. Írjuk fel a lendület- és az energia-megmaradás törvényét a második ütközésre: kmv-mv& =kmva +mvf kmv2/2+mv2/2=kmva2/2+mvf2/2, ahol va-val és vf-fel jelöltük a labdák felpattanás utáni sebességeit. Az egyenletrendszer fizikailag értelmes megoldása: va =((k-3)/(k+1))v és < vf =((3k-1)/(k+1))v. Ha az alsó labda háromszoros tömegû (k = 3), akkor visszapattanás után az alsó labda megáll (va = 0), és a felsõ labda kétszeres sebességgel pattan fel (vf = 2v), így négyszeres magasságra pattan fel. Ebben az esetben a rendszer teljes mozgási energiáját a felsõ labda kapja meg (negyedakkora tömeg négyszeres energiát kap). Érdekes észrevenni azonban, hogy nem ez a tömegarány jelenti a legmagasabb felpattanást; minél nagyobb az alsó labda tömege a felsõhöz képest, annál inkább növekszik a felsõ labda végsõ sebessége, és határátmenetben vf 	o3v, ha k	oinfty, vagyis a felsõ labda sebessége háromszorosnál jobban nem nõhet, legfeljebb kilencszeres magasságra pattanhat vissza.

Érdemes még megvizsgálni a k = 1 határesetet is. Ekkor va=-v és vf=v, ami azt jelenti, hogy az alsó labda újra a talajjal ütközik, majd rögtön felpattan v sebességgel, és a két azonos tömegû labda lényegében együtt mozog felfelé, mintha csak egy testet ejtettünk volna le. Minden egyéb esetben (k > 1) a felsõ labda lesz gyorsabb. Az alsó labda a második ütközés után vagy felfelé indul (k> 3), vagy megáll (k = 3), vagy lefelé mozdul el (3 >k> 1), ám ebben az esetben a talajjal történõ ütközés megváltoztatja a sebességének az irányát. Mindezeket figyelembe véve a probléma teljes megoldása k ge1 esetén: va =|(k-3)/(k+1)|v, és vf = 3k-1k+1v.

Megjegyzés: Ha a tömegarányra vonatkozó k ge1 feltétel nem teljesül, vagyis 0< k <1, akkor az alsó labda lesz gyorsabb, és gyors pattogás kezdõdik a felsõ labda és a talaj között. Ekkor már nem tartható a tökéletesen rugalmas ütközést feltételezõ közelítés, gyors energiaveszteség következik be, és a megfigyelésekkel egyezõen a labdák alig pattannak fel.


Szerzők

  • Baranyai Klára
  • Honyek Gyula

Forrás, irodalom, hivatkozás

  • Fizika, középiskolai tankönyvsorozat a Műszaki Kiadó gondozásában Szerzők: Gulyás János, Honyek Gyula, Markovits Tibor, Szalóki Dezső, Tomcsányi Péter, Varga Antal
  URI STRING  
/show/112/F-B-C
  CLASS/METHOD  
show/index
  MEMORY USAGE  
625,336 bytes
  BENCHMARKS  
Loading Time Base Classes  0.0008
Controller Execution Time ( Show / Index )  0.0127
Total Execution Time  0.0135
  GET DATA  
No GET data exists
  POST DATA  
No POST data exists
  DATABASE:  kiserletek   QUERIES: 9   
0.0008   INSERT INTO `sessions(`session_id`, `ip_address`, `user_agent`, `last_activity`) VALUES ('97968ad30b5365ab8b419f90ba439615''18.97.14.81''CCBot/2.0 (https://commoncrawl.org/faq/)'1734195132) 
0.0008   SELECT `label`, trim(item) as item
FROM 
(`categories`) 
0.0008   SELECT *
FROM (`experiments`)
WHERE `eid` = '112' 
0.0014   SELECT *
FROM (`exp_kwd`)
JOIN `keywordsON `keywords`.`path`=`exp_kwd`.`path`
WHERE `eid` = '112' 
0.0009   SELECT *
FROM (`exp_cat`)
JOIN `categoriesON `categories`.`label`=`exp_cat`.`label`
WHERE `eid` = '112' 
0.0008   SELECT `name`
FROM (`materials`)
WHERE `eid` = '112' 
0.0007   SELECT `source`
FROM (`sources`)
WHERE `eid` = '112' 
0.0012   SELECT *
FROM (`exp_authors`)
JOIN `authorsON `exp_authors`.`monogram`=`authors`.`monogram`
WHERE `exp_authors`.`eid` = '112' 
0.0011   SELECT *
FROM (`media`)
JOIN `media_typeON `media_type`.`format`=`media`.`format`
JOIN `exp_mdaON `media`.`mid` = `exp_mda`.`mid`
WHERE `exp_mda`.`eid` = '112'